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Abstract

The fundamental frequency of a thin circular plate supported by a concentric partial foundation is
studied. For free or sliding edge conditions, the fundamental mode may not be axisymmetric.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of a plate supported laterally by an elastic foundation was discussed on the first
page of Leissa’s celebrated book [1]. Leissa deduced that the effect of a full (Winkler) foundation
merely increases the square of the natural frequency of the plate by a constant. The same
conclusion was conjectured by Salari et al. [2]. The vibration of a plate supported by a partial

elastic foundation was considered by Laura et al. [3], in which case a simple frequency relation no
longer holds.
The aims of this communication are several. Firstly, we shall derive exact frequency

determinants to confirm and extend Laura’s approximate results for the clamped and simply
supported plates. Secondly we study, for the first time, the plate with free and sliding edge
conditions. It will be shown that in these cases the axisymmetric fundamental mode assumed by
previous authors may not be appropriate.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. Formulation

Consider a circular plate of radius R, density r and flexural rigidity D supported in the interior
by a foundation of radius bR. We designate the outer unsupported region by subscript I and the
inner foundation region by subscript II. For region I the (Kirchhoff) thin plate equation is

r4wI � k4wI ¼ 0; (1)

where all lengths are normalized by R and k4
� R4o2r=D is a parameter representing the

frequency o: For region II the equation is [1]

r4wII � k4wII þ a4wII ¼ 0; (2)

where a4 � R4K=D represents the stiffness K of the foundation. It is seen from Eqs. (1) and (2)
that, if the plate is fully supported, the frequency satisfies the relation

k4
¼ k4

0 þ a4; (3)

where k0 is the frequency parameter when the foundation is absent. For partial foundations, Eq.
(3) fails since the frequencies, stresses, displacements, etc. need to be reconciled between regions I
and II. Let

w ¼ uðrÞ cosðnyÞ; (4)

where n is the number of nodal diameters. The general solution to Eq. (1) is a linear combination
of the Bessel functions

uIðrÞ ¼ C1JnðkrÞ þ C2Y nðkrÞ þ C3InðkrÞ þ C4KnðkrÞ: (5)

The general solution to Eq. (2), bounded at the center, is more complicated. If k4a the
solution is

uIIðrÞ ¼ C5Jnðk̂rÞ þ C6Inðk̂rÞ; (6)

where k̂ ¼ ðk4
� a4Þ1=4: If k ¼ a the solution is

uIIðrÞ ¼ C5r
n þ C6r

nþ2: (7)

If koa the solution is

uIIðrÞ ¼ C5 Re½Jnð
ffiffi

i
p

~krÞ
 þ C6 Im½Jnð
ffiffi

i
p

~krÞ
; (8)

where i �
ffiffiffiffiffiffiffi

�1
p

and ~k ¼ ða4 � k4
Þ
1=4:

Since the plate is continuous, the matching conditions are

uIðbÞ ¼ uIIðbÞ; u0
IðbÞ ¼ u0

IIðbÞ; (9,10)

u00I ðbÞ ¼ u00IIðbÞ; u000
I ðbÞ ¼ u000IIðbÞ: (11,12)

At the outer edge, the plate may be clamped,

uIð1Þ ¼ 0; u0
Ið1Þ ¼ 0; (13)

or simply supported,

uIð1Þ ¼ 0; u00I ð1Þ þ nu0Ið1Þ ¼ 0; (14)
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where n is the Poisson ratio (taken as 0.3 in this paper), or free,

u00
I ð1Þ þ n½u0Ið1Þ � n2uIð1Þ
 ¼ 0;

u000
I ð1Þ � u0

Ið1Þ½1þ nþ n2ð2� nÞ
 þ 3n2uI ð1Þ ¼ 0; ð15Þ

or sliding (movable),

u0Ið1Þ ¼ 0; u000
I ð1Þ þ u00

I ð1Þ þ n2ð3� nÞuIð1Þ ¼ 0: (16)

For given b, n and a; Eqs. (9)–(12) and one set of Eqs. (13)–(16) give an exact characteristic
equation for non-trivial solutions of the coefficients C1; . . . ;C6: The equation is then solved by
simple bisection for the parameter k. We are interested in the fundamental or lowest frequency.
3. Results for the clamped and simply supported plate

For the plate with a clamped edge, Eq. (13) is used. The results are shown in Fig. 1 for a up to
20. It was found that the n ¼ 0 axisymmetric mode gives the fundamental frequency. All three
forms of Eqs. (6)–(8) are used. When b ¼ 0; the foundation is absent and the frequency is
governed by the clamped circular plate, i.e. k ¼ 3:19623 or the first root of

J0ðkÞI1ðkÞ þ I0ðkÞJ1ðkÞ ¼ 0: (17)

When b ¼ 1; the plate has full foundation support, and the frequency can be obtained from Eq.
(3) with k0 ¼ 3:19623: For large a (very stiff foundation) the curves will be asymptotic to
Fig. 1. Fundamental frequency of plate with clamped edge.
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Fig. 2. Fundamental frequency of plate with simply supported edge.

Table 1

Comparison of exact values with approximate values from Ref. [3] (clamped edge)

b ¼ 0:3 b ¼ 0:3 b ¼ 0:6 b ¼ 0:6

a 2.1147 3.1623 2.1147 3.1623

k (exact) 3.25573 3.46124 3.32706 3.73672

Ritz [3] 3.2558 3.4615 3.3275 3.7367

F.E. [3] 3.2558 3.4771 3.1257 3.6576
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the clamped–clamped annulus. The exact characteristic equation was given by McLeod and
Bishop [4].
Table 1 shows a comparison of our exact values with the values obtained by Laura et al. [3] by

Ritz and finite element methods.
The simply supported edge conditions are given in Eq. (14). The results are shown in Fig. 2.

Again the n ¼ 0 axisymmetric mode prevails. When b ¼ 0 the fundamental frequency is 2.22152
which is the first root of

J1ðkÞ

J0ðkÞ
þ

I1ðkÞ

I0ðkÞ
�

2k

1� n
¼ 0: (18)

When b ¼ 1; Eq. (3) is used. The asymptotes can be found from an exact determinant given in Ref.
[4]. Table 2 shows a comparison with the data from Laura et al. [3].
In both cases, the Ritz method seems to be accurate for the low values of the stiffness

parameters considered.
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Fig. 3. Fundamental frequency of plate with free edge. Solid lines are from the n ¼ 0 mode, dashed lines are from the

n ¼ 1 mode, and dotted line denote the switching of fundamental modes. Small circle represent the traditional n ¼ 2

mode when a ¼ 0:

Table 2

Comparison of exact values with approximate values from Ref. [3] (simply supported edge)

b ¼ 0:3 b ¼ 0:3 b ¼ 0:6 b ¼ 0:6

a 2.1147 3.1623 2.1147 3.1623

k (exact) 2.33844 2.67274 2.51384 3.17204

Ritz [3] 2.339 2.677 2.514 3.1724

F.E. [3] 2.349 2.702 2.536 3.2249

C.Y. Wang / Journal of Sound and Vibration 285 (2005) 1203–1209 1207
4. Results for plates with a free edge and with a sliding edge

The plate with a free edge is solely supported by the partial elastic foundation. If the foundation
were absent, the fundamental frequency of a totally free plate is 2.3148 from the n ¼ 2 mode [1],
since the n ¼ 0 and 1 modes have zero frequency and represent rigid motions. However, the effect
of a foundation is to promote the n ¼ 0 and 1 modes. Using Eq. (15) the exact characteristic
equation is obtained and solved for the lowest frequency. Fig. 3 shows the results.
We found that all curves start from zero. From Eq. (3) the b ¼ 1 curve is the straight line k ¼ a:

The n ¼ 2 mode is no longer the fundamental vibration mode. For small a ðao4:45Þ or small b

ðbo0:349Þ the fundamental frequency is governed by the n ¼ 1 mode. For larger a or b the
fundamental frequency is given by the symmetric n ¼ 0 mode. The locus where the modes switch
depends on b and is shown by the dotted curve. If stiffness is infinite, the plate is equivalent to a
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Fig. 4. Fundamental frequency of plate with sliding edge. Solid lines are from the n ¼ 0 mode, dashed lines are from the

n ¼ 1 mode, and dotted lines denote the switching of fundamental modes. Small circle represent the traditional n ¼ 1

mode when a ¼ 0:
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clamped–free annulus, whose frequency values are tabulated by, e.g. Ref. [5]. Our computations
show the switch from n ¼ 1 to 0 mode when a ! 1 is at b ¼ 0:349; k ¼ 2:814:
The last case is the plate with a sliding or movable edge, where the slope and shear are zero on

the boundary. If the foundation is absent, we find that the fundamental frequency is 1.75570 given
by the n ¼ 1 mode. However, the slightest foundation stiffness causes the fundamental frequency
to be determined by the n ¼ 0 mode. Fig. 4 shows for 0oao2:90 that the plate vibrates with the
n ¼ 0 mode. Then, for given b and increasing a; the fundamental mode switches to the n ¼ 1 mode
and back to the n ¼ 0 again at higher stiffness. Thus there exists a V-shaped corridor of n ¼ 1
fundamental modes. When stiffness is infinite, we find the n ¼ 1 mode occurs for 0obo0:1177
ðko2:4700Þ and the n ¼ 0 mode dominates for b40:1177:
5. Discussions

Using exact characteristic equations, the fundamental frequency is found for a partially
supported plate for all four types of edge conditions. The approximate energy or finite element
methods would have scaling difficulties when the radius of the supported region is very small or
very close to unity.
For the plates with free and sliding edges, the fundamental frequencies are no longer related to

the traditional n ¼ 2 and 1 modes when the support is absent. The fundamental frequencies are
complicated functions of the stiffness and the radius of the support corresponding to both n ¼ 0
and 1 modes, as depicted in Figs. 3 and 4.
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Is a partially supported plate equivalent to a stepped plate where two regions of different
properties are similarly joined? The answer is no. For a stepped plate complete continuity of
Eqs. (9)–(12) does not hold. A free stepped plate, like a free homogeneous plate, would have a
fundamental mode with n ¼ 2; unlike the n ¼ 0 or 1 modes for partially supported plates.
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